Designing Audio Circuits and Systems

Table of Contents

1. Introduction

1.1 The Basics

Circuit Building Blocks Passive Components Surface Mount Technology Networks, Poles and Zeros Semiconductors Operational Amplifiers Negative Feedback Noise Passive and Active Filters Distortion Electronic Switches Power Supplies and Grounding

1.2 Audio Signal Processing and Control

Equalizers and Tone Controls Headphone Amplifiers Volume Controls, Faders, Balance Controls and Panning Circuits Digital-to-Analog Converters (DACs) Active Crossovers and Loudspeaker Equalization Voltage Controlled Amplifiers Compressors and other Dynamic Processors Level Displays and Metering Microcontrollers and Microcomputers Mixing Consoles DI Boxes and Microphone Splitters

1.3 Line Level Preamplifiers

Signal Switching Volume and Balance Controls Tone Controls and Equalizers Muting

1.4 Phono and Tape Preamplifiers

Moving Magnet Preamps Moving Coil Preamps Infrasonic Filters

1.5 Microphone Preamps

Dynamic Microphone Preamps Phantom Powering Condenser Microphone Preamps Electret Microphone Preamps Ribbon Microphone Preamps MEMS Microphones

1.6 Mixing Consoles

Channel Strips Buses Output Module Faders Pan Pots and Cross-faders Equalizers Compressors and Limiters

2. A Simple Preamplifier Design

Functional features Design features

2.1 Preamplifier Block Diagram

2.2 Line Level Signal Path

Input Buffer and Balance Control Volume Control and Output Buffer Balanced Outputs

2.3 Tone Controls

2.4 Muting Circuit

2.5 Moving Magnet Phono Preamplifier

DC Servo RIAA Equalization Noise Signal Levels and Overload Infrasonic Filter

2.6 Moving Coil Phono Preamplifier

2.7 Relay Switching

2.8 Power Supply

Power Budget On-Board Linear Power Supply Dongle Supply Ground Isolation Switch-Mode Power Supply Alternatives

2.9 Testing

Initial Inspection and Passive Tests Power Supply Test DC Voltage Tests Mute Circuit and Relay Test Signal Path Testing Trimming for Volume Pot Tracking

2.10 Troubleshooting

3. Circuit Building Blocks

3.1. Introduction

3.2. Transistors

Transistor Characteristics Collector Current vs. Base-Emitter Voltage V_{be} as a Function of Collector Current V_{be} Temperature Coefficient (TC) Delta V_{be} Transconductance Hybrid π Transistor Model JFET Characteristics

3.3 Basic Amplifier Stages

Common-Emitter (CE) Stage Darlington CE Stage Bandwidth of the CE Stage and Miller Effect Differential Amplifier Emitter Follower Source Follower Cascode JFET Cascodes

3.4 Current Mirrors

3.5 Current Sources

Resistive Divider Reference Silicon Diode Reference Transistor Vbe Delta Vbe Green LED Reference Zener Diode Reference Current Mirror Current Source Feedback Current Source Ring-of-Two Current Source PTAT Current Source JFET Current Sources Current Regulating Diodes IC Current Sources

3.6 Voltage References

Green LED Shunt Voltage Reference Zener Shunt Voltage Reference Ring-of-Two Voltage Reference IC Voltage References PTAT Voltage References

3.7 Bandgap Voltage References

Widlar Bandgap Reference Brokaw Bandgap Reference Curvature Correction Implementation MOSFET Bandgap Voltage References

3.8 Complementary Feedback Pair (CFP)

Limitations of the CFP and Improvements JFET Complementary Feedback Pairs Cascoded JFET CFP

3.9 Vbe Multipliers

3.10 Diamond Buffer

3.11 Operational Amplifiers Latchup

3.12 Circuit Simulation

LTspice

4. Passive Components

4.1 Resistors

Types Standard Values Wattage Ratings and Temperature Temperature Coefficients PTC and NTC Resistors Thermistors Varistors Photoresistors Inductance Sources of Distortion and Voltage Dependence

4.2 Potentiometers

Potentiometer Tapers Rotation and Travel Multi-Gang Potentiometers and Tracking Motorized Potentiometers Wiper Loading Effects Wiper Resistance, Noise and Distortion

4.3 Capacitors

Capacitive Reactance and Imaginary Numbers Capacitor Dielectrics Dielectric Absorption Capacitor Distortion and Dielectric Nonlinearity Capacitors for Audio Applications Voltage Ratings, Temperature Ratings and Reliability Tolerances ESR and ESL Variable Capacitors and Trimmers Varactors

4.4 Inductors

Core Materials Core Saturation Ferrite Beads

4.5 Transformers

Turns Ratio and Impedance Transformation Leakage Inductance and Leakage Reactance Toroid versus Conventional Transformers Split-Bobbin Transformers

4.6 Mechanical Switches

Contact Configurations Contact Resistance Bounce Transition Interval Make-Before Break or Break Before Make Shaft Encoders

4.7 Electromechanical Relays

Latching Relays Relay Drivers Minimum Activate and Hold Voltages Contact Bounce Actuate, Release and Transition Times

5. Surface Mount Technology

5.1 Advantages

5.2 Passive Component Packages and Sizes

5.3 Discrete Semiconductor and IC Packages

5.4 SMT Assembly

Hand or Manual Assembly Automated Assembly ROHS

5.5 Printed Circuit Board Fabrication

- 5.6 DIP Adapters and Prototyping
- 5.7 Rework

6 Poles, Zeros, Networks and Bode Plots

6.1 Resistance And Resistor Networks

Conductance and Admittance Resistors in Parallel Resistive and Reactive Attenuators

6.2 Reactance

Radian Frequency

6.3 Imaginary Numbers and Complex Numbers

The Square Root of Minus One Complex Numbers

6.4 Impedance and the Complex Plane

The Complex Plane Conductance and Admittance

6.5 Poles And Zeros

6.6 Bode Plots

Gain and Phase of a Pole vs. Frequency An Example Bode Plot

6.7 The s Plane

6.8 Transfer Functions

6.9 Resonant Circuits

Quality Factor Q

7. Semiconductors

7.1 Bipolar Junction Transistors

 \dot{C} urrent Gain Base-Emitter Voltage The Gummel Plot Transconductance Input Resistance Early Effect Junction Capacitance Speed and f_T The Hybrid Pi Model The Ideal Transistor V_{be} vs. Temperature Safe Operating Area Dual Monolithic BJTs

7.2 Junction Field Effect Transistors

JFET I_d Versus V_{gs} Behavior JFET Subthreshold Conduction I_{DSS} and Threshold Voltage Variations Impedance Conversion and Charge Amplifiers Voltage Controlled Resistors Signal Switches Dual Monolithic JFETs Constant Current Diodes Low Leakage Diodes

7.3 Small-Signal MOSFETs

Lateral MOSFETs Double Diffused MOSFETs (DMOS) MOSFET *Id* vs. *Vgs* Subthreshold Conduction

7.4 Diodes and Rectifiers

Junction Capacitance Rectifier Speed Soft Recovery and Fast Recovery Schottky Diode Rectifiers

7.5 Zener Diodes

Zener Diode Mechanism Zener Diode Impedance Zener Diode Temperature Coefficient Zener Diode Noise

7.6 LEDs

Use as Voltage References Colors and Forward Voltage Impedance as a Function of Current and Color Temperature Coefficient of Forward Voltage LED Noise

8. Operational Amplifiers

- 8.1 The Ideal Op Amp
- 8.2 Inverting Amplifiers and the Virtual Ground

8.3 Non-Inverting Amplifiers and the Virtual Short

8.4 Differential Amplifier

8.5 Instrumentation Amplifier

8.6 Noise Gain

8.7. Compensation

Unity Gain Compensation External Compensation

8.8 A Simple Op Amp

8.9 Basic Specifications and Performance

Gain And Gain-Bandwidth Slew Rate Input Offset Voltage Input Bias and Offset Current Common Mode Rejection Power Supply Rejection Noise Maximum Output Swing Total Harmonic Distortion (THD) Input Common-Mode Distortion Measuring Op Amp Distortion Technology Advances

8.10 FET Op Amps

CMOS Op Amps

8.11 Composite Op Amps

8.12 Op Amp Circuits

Full-Wave Rectifiers Full-Wave Peak Detector Integrators Filters Sine Wave Oscillator

9. Negative Feedback

9.1 How Negative Feedback Works

9.2 Input-Referred Feedback Analysis

9.3 Simple Feedback Circuits

Emitter Degeneration Shunt Feedback Series Feedback Current Feedback Amplifiers

9.4 Frequency-Dependent Negative Feedback

A Phono Preamp

9.5 Feedback Compensation and Stability

Poles and Zeros Phase and Gain Margin Gain and Phase Variation Capacitive Loads

9.6 Feedback Compensation Principles

Dominant-Pole Compensation Excess Phase Lag Compensation Miller Compensation

9.7 Evaluating Loop Gain

Breaking the Loop Exposing Open-Loop Gain Simulation Tian Probe

9.8 Evaluating Stability Probing Internal Nodes in Simulation

Probing Internal Nodes in Simulation Checking Gain Margin Checking Phase Margin Recommendations

9.9 Compensation Loop Stability

9.10 Slew Rate

Calculating the Required Miller Capacitance Slew Rate

9.11 Harmonic and Intermodulation Distortion Reduction Intermodulation Distortion

10. Noise

10.1 Signal-to-Noise Ratio THD+N Measurements

10.2 A-Weighted Noise Specifications A-Weighting Filter Design

10.3 Noise Power and Noise Voltage

10.4 Noise Bandwidth

Low-Pass Filter Noise Bandwidth A-Weighting Noise Bandwidth

10.5 Noise Voltage Density and Spectrum

Pink Noise 1/f Noise and Flicker Noise The Color of Noise The Sound of Noise

10.6 Relating Input Noise Density to Signal-to-Noise Ratio

10.7 Amplifier Noise Sources

Input Stage VAS Noise Power Supply Noise and PSRR Switchmode Power Supply Noise Capacitance Multiplier Ground Loops and Noise Pickup Star Quad Cable

10.8 Thermal Noise

10.9 Shot Noise

10.10 Bipolar Transistor Noise

BJT Input Noise Voltage BJT Input Noise Current Low Noise Transistors Noise Figure Optimum Source Impedance

10.11 JFET Noise

JFET Operation JFET Noise Sources Thermal Channel Noise Gate Shot Noise Current 1/f Noise Generation-Recombination Noise Impact Ionization Noise

10.12 Op Amp Noise

Input Noise Voltage Input Noise Current Input Noise Impedance Noise Gain

10.13 Noise Simulation

Emitter Followers and Source Followers Noiseless Resistors Noise Sources Simulating the Noise of a Transistor

10.14 Preamplifier Circuit Noise

Noise of a Degenerated Differential Pair Current Source Noise Current Mirror Noise IPS/VAS Noise Paralleled Devices

10.15 Excess Resistor Noise

10.16 Zener Diode and LED Noise

10.17 Low-Noise Amplifiers for Extremely High-Impedance Sources

11. Filters

11.1 Filter Shapes and Characteristics

Poles and Zeros Second-Order Filters and Q Third-Order and Odd-Order Filters Butterworth Maximally Flat Filter Transfer Functions Q and Peaking Butterworth Filters of Higher Order Converting Pole Location to Frequency and Q Bessel Maximally Flat Delay Filter Chebyshev Equiripple Filter Elliptic Filter (Cauer Filter)

11.2 Sallen-Key Filters

Sallen-Key Second-Order LPF, HPF and BPF The Low-Pass Prototype Second-Order Low-Pass Butterworth, Bessel and Chebyshev Filters Second-Order Sallen-Key High-Pass Filters Second-Order Sallen-Key Band-Pass Filters Second-Order Sallen-Key Equations Equal Value Capacitors Sallen-Key Filters with Gain Active Filter Implementations of Order Higher Than 2

11.3 Sallen-Key Third-Order Filters

11.4 Filter Sensitivity

11.5 Multiple Feedback Filters (MFB)

MFB Low-Pass Filters MFB Band-Pass Filters Delyiannis MFB Band-Pass Filter MFB Advantages and Applications

11.6 State Variable Filters

State Variable Notch Filters State Variable Quadrature Outputs

11.7 Coupled State Variable Band-Pass Filters

Coupled Fourth-Order Band-Pass Filters Coupled Sixth-Order Band-Pass Filter

11.8 The Biquadratic Filter

Quadratic Poles and Quadratic Zeros Forming the Quadratic Numerator Feedforward Three-Amplifier Biquad A Biquad Variant

11.9 Single-Amplifier Biquad and Linkwitz Transform Linkwitz Transform

11.10 Gyrators

The Gyrator Inductor Buffered Gyrator

11.11 Negative Impedance Converters (NIC)

11.12 Frequency-Dependent Negative Resistors (FDNR)

11.13 Wien Bridge and Bridged-T Filters

11.14 Twin-T Notch Filters

Notch Filter Q Loss at Harmonic Frequencies Notch Depth vs. Component Tolerances, Fine Tuning and Trimming Loading Active Twin-T Filter with Positive Feedback Active Twin-T Filter with Negative Feedback Compensated Twin-T Filter Twin-T Filter with Defined Notch Depth

11.15 Bainter Notch Filters

Bainter Band-Pass Filter

11.16 Hall Notch Filter

Design Approach Performance and Applications

11.17 All-Pass Filters

First-Order All-Pass Filters Second-Order All-Pass Filters Single-Amplifier Second-Order All-Pass Filter Third-Order All-Pass Filters Group Delay vs. Frequency

11.18 Application-Specific filters

Pink Noise Filter Noise-Weighting Filters Anti-Alias and Reconstruction Filters AES17 Filters EMI Filters

12. Distortion

12.1 Nonlinearity and Its Consequences The Order of a Nonlinearity

12.2 Total Harmonic Distortion Interpretation of THD Advantages of THD Measurements Limitations of THD Measurements

12.3 SMPTE Intermodulation Distortion

12.4 CCIF Intermodulation Distortion

12.5 Transient Intermodulation Distortion

Slew Rate Limiting and Input Stage Stress The Dynamic Intermodulation Distortion (DIM) Test THD-20 Will Always Accompany TIM Recommended Amplifier Slew Rate

12.6 Phase Intermodulation Distortion

Measuring PIM Negative Feedback and PIM Input Stage Stress PIM in Preamplifiers without Negative Feedback

12.7 Multitone Intermodulation Distortion (MIM)

12.8 Highly Sensitive Distortion Measurement

12.9 Input-Referred Distortion Analysis Input Referral Breaks the Feedback Loop

Why High Forward-Path Gain Reduces Distortion

- 12.10 Other Sources of Distortion Distortion Mechanisms
- 12.11 Early Effect Distortion
- **12.12 Junction Capacitance Distortion**
- **12.13 Grounding Distortion**

12.14 Power Rail Distortion

12.15 Input Common-Mode Distortion Testing for Common-Mode Distortion

12.16 Resistor Distortion

12.17 Capacitor Distortion

12.18 Inductor and Magnetic Distortions Magnetic Core Distortion

Distortion from Proximity to Ferrous Materials Ferrite Beads

12.19 EMI-Induced Distortion

12.20 Thermally Induced Distortion

13. Switches and Relays

13.1 Mechanical Switches and Pushbuttons Rotary Encoders

13.2 Mechanical Relays

Contact Resistance and Self-Cleaning Coil Voltage, Resistance, Current and Dissipation Relay Drivers and Flyback Control Vertical MOSFET Relay Drivers Activate, Transition and Release Times Latching Relays Switching and Muting Applications

13.3 JFET Switches

On Resistance and Capacitance Floating JFET Switches and Biasing Conditions Sources of Distortion

13.4 MOSFET Switches

13.5 DMOS Switches

Body Diode Restrictions 1/f Noise

13.6 CMOS Switches

13.7 CMOS/DMOS Switches

13.8 Photo-Coupled Switches Phototransistor

14. Power Supplies and Grounding

14.1 The Design of the Power Supply

14.2 Power Transformer Toroidal Transformers R-Core Transformers

14.3 Reservoir Capacitors

Equivalent Series Resistance (ESR) and Inductance (ESL) Bypasses and Zobel Networks for Reservoir Capacitors Split Reservoir Capacitors

14.4 Rectifier Speed

Soft Recovery and Fast Recovery Rectifier Noise and Snubbers

14.5 IC Voltage Regulators

LM317/337 Adjustable Regulators 150-mA Adjustable LDO Regulators 150-mA Dual-Polarity LDO Regulators 1-A Adjustable LDO Regulators

14.6 Capacitance Multipliers

14.7 External Power Supplies

AC Wall Transformers and External Power Supply Blocks

14.8 Switch Mode Power Supplies (SMPS)

Basic DC-DC Converters Buck Converter Boost Converter Buck-Boost Converter Cuk Converter Inverting Buck Converter Inverting Buck-Boost Converter Boost-Buck Converter SEPIC Converter Charge Pumps for Creating a Negative rail Dual Polarity Converters USB Powering Wall Transformer Powering Computer Brick Powering Post-SMPS Regulation

14.9 Grounding Architectures

Noisy and Quiet Grounds When Ground is Not Ground Star Grounding Ground Corruption Ground Planes Chassis Grounding

14.10 Radiated Magnetic Fields

14.11 Safety Circuits

Safety Ground Breaking Safety Ground Loops

15. Moving Magnet Phono Preamplifiers

15.1 Gain and Equalization

Input Levels and Gain RIAA Equalization RIAA Equalization Values at Key Frequencies Choosing Component Values and Types Amplifier Gain-Bandwidth Product

15.2 Moving Magnet Cartridge Model and Termination

Cartridge Inductance and Resistance Cartridge Electrical Resonance and Cartridge Loading Cartridge Impedance Cantilever Resonance

15.3 Noise

Cartridge Thermal Noise Cartridge Loading Noise Preamplifier Voltage and Current Noise Output Noise Spectrum and the Color of Noise Signal-to-Noise Ratio Noise Weighting Phons and the Equal-Loudness Contours Real World Noise with Cartridge Connected EMI Susceptibility

15.4 Overload

15.5 Classic Phono Preamp Circuit

Discrete BJT Preamp Discrete JFET Preamp BJT Op Amp Preamp JFET Op Amp Preamp JFET Hybrid Op Amp Preamp

15.6 DC Servos

DC Coupling the Cartridge Input

15.7 Inverse RIAA Network

Reference RIAA EQ

15.8 Other Phono Preamplifier Architectures

Classic Single-Amplifier Series Feedback Design Fully Passive Equalization Active-Passive Equalization Passive-Active Equalization Passive-Active Variant with Transconductance Input Stage

15.9 Infrasonic (Subsonic) Filters

Third-Order Butterworth Filter

15.10 Vertical Flutter Reduction

15.11 A JFET Phono Preamplifier

Circuit Description Input Amplifier Equalizer Amplifier DC Servo Noise Power Sequencing and Muting

15.12 Synthetic Cartridge Loading

15.13 Balanced Inputs

Balanced Input with THAT 1512 Preamp

15.14 The VinylTrak Phono Preamp

Gain and Equalization Architecture Damped-Cartridge RIAA Equalization Damped Cartridge Equalization and Load Synthesis Discrete JFET Moving Magnet Input Stage JFET Gain Spread RIAA LF Equalization and DC Servo Noise Overload Margin Balance Control and L-R Output Low-Frequency Monaural Merge Infrasonic Filter Balanced Outputs Power-on Mute and DC Protect Summary

16. Moving Coil Phono Preamps

16.1 Signal Levels and MC Cartridge Characteristics

Required Gain Cartridge Noise Cartridge Termination Matching the Transformer and Cartridge

16.2 Moving Coil Transformers

Step-up Ratio and Impedance Transformation Coil Resistance Magnetic Shielding and Faraday Screens Core Material and Core Saturation Ringing and Zobel Network Termination Target SNR vs. Sound Quality Balanced Inputs

16.3 Noise in the Cartridge-Transformer System Achievable Signal-to-Noise Ratio

16.4 Moving Coil Head Amps

Putting Noise in Perspective Two-Transistor CFP Head Amp Improved CFP Head Amp with 5 Transistors CFP Head Amp with DC Servo Head Amp with Differential Input Stage

16.5 Other BJT and Op Amp Head Amps

Hybrid Differential Input Stage with OP Amp Output Stage Op Amp Head Amps Dedicated RIAA Head Amp/preamp

16.6 A JFET Head Amp

Operating with Paralleled JFETs

16.7 Balanced Input Head Amp

Fighting the 3-dB Penalty Hybrid Head Amp with Transformer and Active MC Preamplifier

16.8 The VinylTrak Dedicated MC Preamp

The Input Amplifier Paralleling JFET Differential Pairs DC Servo RIAA Equalization and Remaining Gain Noise Distortion Overload Margin Gain Balance

17. Tape Preamps and NAB/IEC Equalization

17.1 Signal Levels and Tape Head Characteristics

Typical Signal Levels and Required Playback Gain Tape Head Characteristics and Electrical Model

17.2 NAB and IEC Equalization

NAB Equalization IEC (CCIR) Equalization AES-1971 30 ips Equalization

17.3 Other Frequency Response Effects

Head Loading External Playback Preamplifiers Gap Loss at High Frequencies Head Bump Record Equalization Record Bias

17.4 Noise

Input Stage Voltage Noise Input Stage Current Noise Playback Head Thermal Noise A Simple Example

17.5 NAB Playback Preamplifiers

An Op Amp-Based Tape Preamp A Hybrid JFET Preamplifier Design

18. Microphone Preamps

18.1 Acoustic and Electrical Signal Levels and Sensitivity

Sensitivity Self-Noise Signal-to-Noise Ratio Dynamic Range Typical Sound Levels Loudness Phons, Sones and the Equal-Loudness Contours A-Weighting, ITU-R 468 Weighting and CCIR-ARM Weighting

18.2 Microphone Types and Characteristics

Dynamic Microphone Condenser Microphone Electret Microphone Ribbon Microphone Piezoelectric Microphone and Sensors

18.3 Console Microphone Preamplifiers

Signal Levels, Noise and Overload Noise and EIN RFI and the Pin 1 Problem A Simple IC Dynamic Microphone Preamp Discrete Microphone Preamp JFET-Input Preamps THAT 1512 Microphone Preamp

18.4 Phantom Powering

Voltage, Impedance and Available Current Effect on Common Mode Rejection Noise Enable and Disable

18.5 Condenser Microphone Preamplifiers

The Capsule A Simple Condenser Microphone Preamplifier Noise Sources Thermal Noise vs. Shot Noise The Sound of Condenser Microphone Self-Noise Frequency Response Capsule Diameter and Capacitance Sensitivity vs. Polarizing Voltage Input Capacitance of the Preamplifier Capacitance Attenuator (PAD) Relative Importance of JFET Input Noise Voltage Dual Monolithic JFETs DC Servo An Example JFET Design Phantom-Derived Microphone Power Supply Balanced Interface to the Microphone Cable Polarizing Power Supply JFETs with Gate Floating at DC The Printed Wiring Board Polarizing the Backplate Driving the Backplate or Diaphragm with Negative Feedback Polar Pattern Control Tripolar Design Multi-Pattern Feature without Polarizing and Gate Resistors Continuous Electronic Polar Pattern Control

18.6 Electret Microphone Preamplifiers

Electret Microphone Types Professional Electret Microphones

18.7 Ribbon Microphone Preamplifiers

The Step-Up Transformer Preamplifiers Noise Sources External Amplification Active Ribbon Microphone with Buffer Active Ribbon Microphone with Amplifier

18.8 Piezoelectric Microphone Preamplifiers

Voltage Amplifiers Charge Amplifiers

18.9 MEMS Microphones

Top-Port and Bottom-Port MEMS Microphones Silicon Fabrication Diaphragm Size and Spacing Self-Noise, Sensitivity and SNR Frequency Response and Distortion Microphone Parallelism Polarization Voltage The Amplifier Packaging Digital MEMS Microphones Beam-Forming Microphone Arrays Applications MEMS vs. Electret Microphones Piezoelectric MEMS Microphones

19. Balanced Inputs and Outputs

XLR Connectors

19.1 Common-Mode Rejection

Why Common-Mode Rejection is Important Effects of Source Impedance Ground Loops and Noise Pickup Mechanisms for Common-Mode Intrusion Star Quad Cable

19.2 Balanced Input Circuits

Single Op Amp Differential Amplifier Instrumentation Amplifier Balanced Line Receiver ICs Discrete Balanced Input Amplifiers without Feedback

19.3 Balanced Output Circuits

Balanced Output Using Inverter Impedance-Balanced Outputs Balanced Output Using Differential Amplifiers Cross-Coupled Balanced Drivers Output Common-Mode Rejection OCMR Common-Mode Output Impedance Z_{cm} Output Common-Mode Rejection vs. Output Common-Mode Impedance THAT 1646 *OutSmarts*[®] Balanced Output IC

19.4 Transformers

Galvanic Isolation Avoidance of Ground Loops Preservation of Common-Mode Rejection Attenuation of Conducted Emissions Transformer Shortcomings

19.5 Grounding and Shielding

20. Equalizers and Tone Controls

20.1 Baxandall Tone Control

20.2 Three-Band Tone Control

20.3 Four-Band Equalizer

20.4 Equalizer Topologies

20.5 Wien Bridge Equalizer

Wien Bridge Equalizers with Higher Q and Greater Boost/Cut

20.6 Equalizer Q

Constant-Q Equalizers

20.7 Graphic (Multiband) Equalizers

Band-Pass Tuning Circuits for Graphic Equalizers Series-Resonant Multiband Equalizer Noise Gain of Multiband Equalizers Constant-Q Multiband Equalizer Constant-Q MFB Multiband Equalizer Center Frequencies for Graphic Equalizers 10-band Graphic Equalizer Using Gyrators

20.8 Parametric Equalizers

Parametric Equalizer Band-Pass Filter Constant-Q Parametric Equalizer

20.9 Semi-Parametric Equalizers

Wien Bridge Semi-Parametric Equalizer

20.10 Shelving Equalizers

Second-Order Shelving Equalizers

20.11 Low-Cut and High-Cut Filters

21. Headphone Amplifiers

21.1 Headphone Types

Dynamic Headphones Planar Dynamic Headphones Electrostatic Headphones

21.2 Sound Levels and Load Impedance

Sound Pressure Levels and Sensitivity Peak Power, Voltage and Current Requirements Headphone Impedance

21.3 Headphone Sensitivity and Drive Requirements

21.4 Headphone Amplifier Design Considerations

Power Gain Hum and Noise Volume Control Considerations Volume Control in a 2-Stage Amplifier Distortion Power Requirements and Rail Voltages DC Coupling and DC Servos Muting and Protection Circuits Output Impedance and Damping Factor Output Resistance Stability

21.5 Power Supply Requirements

Quiescent Current and Power Dissipation

21.6 Headphone Amplifier Designs

OPA1622 Stereo Headphone Amplifier Dual OPA1622 Headphone Amplifier LME49600 Headphone Amplifier Headphone Amplifier with a Discrete BJT Output Stage Discrete Lateral MOSFET Headphone Amplifier Other Headphone Amplifier Design Choices

21.7 Crossfeed Circuits

Key Parameters and Types of Crossfeed Implementation Issues Benjamin Bauer Crossfeed Circuit Sigfried Linkwitz Crossfeed Circuit Chu Moy Crossfeed Circuit Adding Delay Jan Meier Crossfeed Circuit Active Crossfeed Circuits Relative Benefit of Crossfeed

21.8 Low-Frequency Equalization Circuits

The Linkwitz Transform

21.9 Hearing Loss Protection

Hearing Loss SPL Levels Noise Exposure Computation Accounting for Headphone Sensitivity Hearing Loss Protection Circuits

22. Volume, Balance, Fader and Panning Controls

22.1 Potentiometer Volume Controls and Faders

Faders Resistance Elements Tapers Wiper Noise Wiper Resistance Wiper Loading Effect on Attenuation Wiper Loading Distortion Output Impedance and Thermal Noise vs. Rotation Tracking, Matching and Trimming Changing the Taper Law Motorized Potentiometers

22.2 Baxandall Active Volume Control

22.3 Switched Attenuators

Granularity Relay Switches Ladder attenuators Active Switched Attenuators

22.4 Integrated Circuit CMOS Volume Controls

Zipper Noise LM1972 µPot 2-Channel 78 dB Audio Attenuator PGA2311 Stereo Audio Volume Control PGA2320 Stereo Audio Volume Control MAX5486 Stereo Audio Volume Control

22.5 Voltage Controlled Amplifiers (VCA)

22.6 Balance Controls

Balance Control Behavior Wiper Crosstalk

22.7 Pan Pots

The Pan Law

Voltage Controlled Pan Pot

22.8 Loudness Controls

23. Digital-to-Analog Converters

DAC Design How Audio DACs Work The DAC

23.1 The Analog Interface

Output Amplifier Voltage-Output DACs Current-Output DACs DC Servo for Common-Mode Offset Control Common-Mode Rejection Other DAC Chips TIA Noise and Speed TIA Distortion Output Filtering DAC Output Capacitance

23.2 Power Supplies, References and Grounding

Op Amp Power supply DAC Chip Analog Power Supply Reference Supply Grounding

23.3 Clock Recovery and Jitter

Phase-Locked Loops Clock Recovery Jitter Transition Density Jitter VCO Phase Noise Re-Clocking I²S Signals Clocking the DAC Chip with a Fixed Clock Asynchronous Sample Rate Converters S/PDIF Manchester Coding

23.4 Digital Audio Interfaces

I²S Digital Audio Interface Digital Audio Interface Receivers USB Digital Audio Inputs

23.5 Digital Audio Sampling and Transmission

Sampling and Reconstruction The sinc Function and Zero-Order Hold

23.6 Interpolation and Decimation

Interpolation Decimation Up-Sampling and Down-Sampling

23.7 R2R DACs

Quantization Noise Oversampling to Increase Effective Bits Segmented DACs

23.8 Sigma-Delta ADCs

Sampling Theorem, Interpolation and Decimation Delta Modulation Sigma-Delta Modulator and Noise Shaping Second-Order $\Sigma\Delta$ Modulator Higher-Order $\Sigma\Delta$ ADCs Multibit $\Sigma\Delta$ ADCs Conversion to PCM

23.9 Sigma-Delta DACs

Reconstruction Filter Imaging Intra-Sample Signal Peaks

23.10 Control Interfaces

I²C Bus SPI Bus

24. Active Crossovers and Loudspeaker Equalization

24.1 Subwoofer Crossovers

Crossover Frequency and Slope Phase Control

24.2 Advantages of Active Crossovers

Active Crossover Example Reduced Dependence on Amplifier Performance Amplifiers Tailored to the Drivers Improved Driver Control Reduced Distortion in the Crossover Reduced Impedance Interactions Crossover Flexibility, Precision and Channel Matching Active Circuit Phase Correction Improved Imaging System Voicing and Driver Equalization Isolation of Clipping Events Active Baffle Step Compensation Bass Response Extension Absence of Speaker Cables

24.3 Disadvantages of Active Crossovers

24.4 Self-Powered Loudspeakers

24.5 Types of Crossovers, Roll-Off Slopes and Phase Relationships

First-Order Crossover Time Alignment, Non-Coincident Drivers and Lobing Error Vertical Lobing Error MTM Driver Arrangement Phase Shift and Group Delay Crossover Slopes Second-Order Butterworth Crossovers Third-Order Butterworth Crossovers Fourth-Order Butterworth Crossovers

24.6 Conventional Crossovers

Second-Order Butterworth Crossovers Third-Order Butterworth Crossovers Fourth-Order Butterworth Crossovers

24.7 Linkwitz-Riley Crossovers

Second-Order Linkwitz-Riley Crossover Fourth-Order Linkwitz-Riley Crossover

24.8 Three-Way Crossover Architectures

24.9 3.5-Way Loudspeakers

24.10 Time Alignment

Active Delay Networks for Time Alignment

24.11 Crossover Filter Design

Driver Correction Crossover Effect on Imaging

24.12 Active Baffle Step Compensation

24.13 Woofer Equalization – Linkwitz Transform

24.14 Equalized Quasi-Sealed System

A Vented System Acting Like a Sealed System Equalizing the Quasi-Sealed System Achieving Higher SPL at Low Frequencies The Equalizer

24.15 DSP Crossovers

24.16 SPICE Simulation

25. Voltage Controlled Amplifiers (VCAs)

25.1 Translinear Circuits

Emitter-Driven VCA Transconductance Paradigm Base-Driven VCA Distortion Noise Control Linearity Control Feedthrough

25.2 VCA Circuits

Baskind and Rubin VCA Feedback VCA Frey VCA Blackmer VCA

25.3 VCA Applications

Volume Control Balance Control Panpot Compressors AGC Circuit Autoscaling AC Voltmeter with Linear dB Readout Tunable State Variable Filters and Oscillators Automation

26. Compressors and Other Dynamic Processors

26.1 Compressors

Versatility Dynamically Changing the Gain

26.2 A Simple Compressor

Makeup Gain Usage Context

26.3 Compressor Attributes

Compression Ratio Compressor Threshold Attack and Release Time Compression Knee Breathing and Pumping Threshold Circuit and Attack/Release Timing

26.4 Compressor Architecture

Feedback and Feedforward Compressors Feedforward Compressors and Side-Chains The Side-Chain Decilinear Compressors and Log Domain Processing Generalized Compressors Limiters Feedback vs. Feedforward Compressors External Side-Chain Inputs Linked Compressors

26.5 Voltage Controlled Gain

Required Gain Range of Control Element Voltage Controlled Amplifiers (VCA) JFET Gain Control Elements Optical Gain Control Elements Vacuum Tube Gain Control Elements

26.6 Amplitude Detection Log-Responding RMS Detector VCA-Based Amplitude Detection

26.7 Frequency-Dependent Compression

26.8 Multiband Compression

26.9 Dynamic Equalization Common Filter Dynamic Equalizer

26.10 De-Essers

26.11 Expandors and Upward Compression Upward Compression

26.12 Compandors

Frequency-Dependent Compandors and Noise Reduction

26.13 Other Types of Dynamic Gain Control

AGC and AGC Hold Noise Gating Ducking

26.14 Clippers Hard and Soft

26.15 The Klever Klipper Soft Clipping with Dynamic Threshold

27. Level Displays and Metering

27.1 The VU Meter

Zero-VU Reference Level Meter Ballistics and Response Time Response to Peaks and Maximum Signal Level Typical Passive VU Meter Circuit Electronic Ballistics and Bar-Graph Displays Microcontroller-Based VU Meters

27.2 Peak Program Meter (PPM) Attack and Release Time Type I and Type IIb PPMs

27.3 Dual-Scale LED Meters

27.4 The Dorrough Meter

27.5 Digital Peak Meter

27.6 True Peak Meters

27.7 Loudness Metering - the LU, the LUFS and LKFS

Terminology K Weighting The LUFs Measurement Measurement Duration and Timing Gating Program Loudness and Loudness Range

27.8 Broadcast vs. Cinema Loudness Models

27.9 Other Audio Level Displays

Peak-Average Meter Power Amplifier Metering Bar Graph Spectrum Displays

28. Microcontrollers and Microcomputers

Embedded Systems System-on-Chip (SoC) Microcomputers (µC) Board-Level MCUs and µCs

28.1 CPU Architectures, Instructions and Execution

28.2 Clocks

28.3 General Purpose I/O (GPIO)

Analog-to Digital Conversion Digital-to-Analog Conversion

28.4 Microcontroller Examples

Microchip Technology PIC Arduino UNO Arduino Nano Raspberry Pi Pico *In-situ* Programming

28.5 Microcomputers

Raspberry Pi 3 Model B Raspberry Pi Zero Operating Systems

28.6 FPGAs and Embedded Processors

Configuration Soft and Hard IP Xylinx Spartan 6 Verilog

28.7 Microcontroller Resources

RAM Memory Flash Memory EEPROM Memory Analog-to-Digital Converter PWM Outputs Timers Serial Ports SPI and I²C Bus Interfaces Other Resources

28.8 SPI Bus

SPI Operating Modes SPI Payload Throughput

28.9 I²C Bus

The Address Space Conundrum

28.10 SPI Bus Peripherals

I/O Expander A/D Converters D/A Converters FLASH EEPROM SD Card RAM

28.11 I²C Bus Peripherals

I/O Expander A/D and D/A Converters FLASH EEPROM RAM

29. Mixers and Recording Consoles

29.1 A Mixer in its Simplest Form

Microphone Preamp Phantom Power Low-Cut Filter Equalizer Fader Pan Pot The Mixing Bus and the Master Section Stereo Mix Buss Master Fader and Line Output Amplifier Headphone Output Level Meters

29.2 Operating Levels, Headroom and Overload

29.3 A Generic 16-Channel Mixer – The Channel Strip

The Channel Strip Alternate Left and Right Busses Solo Monitoring Bus Auxiliary Sends Pre-Fade Listen (PFL) Monitor Bus Channel Inserts Mute Overload Indicators

29.4 A Generic 16-Channel Mixer – The Master Section

Mixing Amplifiers Main Stereo Outputs Master Insert Auxiliary Outputs Return Inputs Foldback

29.5 More Capable Mixers

Stereo Channel Strip Direct Channel Outputs VCA Faders Number of Auxiliary Sends and Flexibility Channel Grouping and Subgroups VCA Groups Simple Matrix Mixer Metering

29.6 More Capable Filters and Equalizers

Variable Frequency Low-Cut Filter

Steeper Shelving Equalizers Series-Resonant Midband Equalizers Wien Bridge Equalizers Quasi-Parametric Equalizers Parametric Equalizers Constant-Q Equalizers

29.7 Monitor Mixers

29.8 Matrix Mixers

29.9 Broadcast Consoles

Microphone Inputs Line Level Inputs Busses On-Location Live Broadcasts Loudness Metering

29.10 Recording Consoles

Multitrack Recording Mixdown

29.11 Mix Bus Technical Challenges Noise Gain

Other Problems Mixing Many Channels

30. DI Boxes and Microphone Splitters

- 30.1 Passive DI Boxes
- 30.2 Active DI Boxes
- **30.3 Passive Microphone Splitter**
- **30.4 Active Microphone Splitters**